邻居搜索问题在CUDA上基于KD-TRIE方法的优化与实现
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-2861.2012.03.017

邻居搜索问题在CUDA上基于KD-TRIE方法的优化与实现

引用
介绍如何在CUDA上搭建KD-TRIE,并对其进行搜索,使其能适应解决邻居搜索问题.实验结果表明,当搜索半径较小(如整个空间直径的0.01和0.001),数据规模较大(如106)时,使用KD-TRIE进行搜索的效果最佳,与蛮力算法相比可以达到加速比5000~15000倍的效果;当搜索半径较大时,加速比会相应减少.采取优化措施,可以提高加速比.

KD-TRIE、k最邻近结点算法、CUDA、图形处理器

18

TP338.6(计算技术、计算机技术)

国家高技术研究发展计划863计划资助项目20009AA012201;上海市教委重点学科建设资助项目J50103

2012-09-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

305-310

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

18

2012,18(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn