基于并行拟牛顿神经网络建模的非线性预测控制
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1007-2861.2004.z1.018

基于并行拟牛顿神经网络建模的非线性预测控制

引用
针对在非线性预测控制中对神经网络预测模型精度和收敛速度的要求,该文提出了一种并行拟牛顿神经网络建模的非线性预测控制算法.该算法中采用一个前向神经网络作为预测模型,网络的训练利用自调节拟牛顿法(SSQN)和BFGS拟牛顿法并行计算Hessian矩阵以及各自的搜索方向,并用最小原理确定出一个最优步长来调节网络各节点之间的权值.通过Matlab仿真证明了该算法的有效性.

神经网络、非线性系统、预测控制、并行拟牛顿法

10

O242.23(计算数学)

2004-11-24(万方平台首次上网日期,不代表论文的发表时间)

共4页

69-72

相关文献
评论
暂无封面信息
查看本期封面目录

上海大学学报(自然科学版)

1007-2861

31-1718/N

10

2004,10(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn