基于BP神经网络对云南省粮食产量的预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-3142.2023.01.008

基于BP神经网络对云南省粮食产量的预测模型

引用
基于BP神经网络建立云南省粮食产量预测模型,分析有关文献,最终选择农业机械总动力、有效灌溉面积、农用化肥施用折纯量、农村用电量、农药使用量、粮食作物播种面积、农用柴油使用量和受灾面积等8个指标作为输入变量,粮食产量为输出变量.首先以云南省1993—2016年的粮食产量及8个粮食产量影响因素等数据,搭建BP神经网络预测模型,预测2017年、2018年和2019年的粮食产量.试验结果表明,基于BP神经网络预测模型在训练阶段,相对误差绝对值基本小于1%;在验证阶段,预测2017年、2018年和2019年的相对误差分别为1.84%、3.25%和2.86%,误差率均控制在5%以为,说明该模型具有很好的预测效果,能够有效地对粮食产量进行预测,并为粮食产量的预测提供了一种新的方法.

BP神经网络、粮食产量、归一化、梯度下降法、预测模型

61

TP183;S-3(自动化基础理论)

云南智能化自动化产业发展研究云府发研号—YNDR2017G1C06

2023-02-10(万方平台首次上网日期,不代表论文的发表时间)

共5页

39-43

相关文献
评论
暂无封面信息
查看本期封面目录

农业装备与车辆工程

1673-3142

37-1433/TH

61

2023,61(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn