数据驱动的动车组滚动轴承故障预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16452/j.cnki.sdkjzk.2017.04.003

数据驱动的动车组滚动轴承故障预测

引用
为了有效提高动车组滚动轴承故障的发现率,减少故障监控系统的误报现象,基于Apache Hadoop大数据平台对经典Apriori算法进行改进,并将其应用于动车组滚动轴承故障的预测研究工作中.首先,针对经典Apriori算法的不足,在MapReduce框架下提出以业务经验为约束的改进的Apriori算法.其次,基于文中提出的改进的Apriori算法对某铁路局的动车组状态、故障预警、维修历史等信息进行深度数据挖掘,并通过得出的关联规则进行动车组滚动轴承故障的预测.实验结果表明,文中提出的算法准确率达72%,减少了80%以上的误报报警信息,在实验环境中运算效率较传统的Apriori算法提高了50%.

智能交通、故障预测、Apriori算法、数据挖掘、大数据

36

U279(车辆工程)

中国铁道科学院院基金2016TJ102

2017-08-09(万方平台首次上网日期,不代表论文的发表时间)

共8页

16-23

相关文献
评论
暂无封面信息
查看本期封面目录

山东科技大学学报(自然科学版)

1672-3767

37-1357/N

36

2017,36(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn