基于机器学习的盾构掘进地表沉降控制及参数优化研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3973/j.issn.2096-4498.2023.12.001

基于机器学习的盾构掘进地表沉降控制及参数优化研究

引用
针对盾构施工过程中引发的地表沉降问题,通过优化掘进参数实现对地表沉降的控制,保障施工顺利进行.基于长短期记忆神经网络(LSTM)与粒子群算法(PSO)等方法,提出改进LSTM-PSO掘进参数优化模型.首先,构建长短期记忆神经网络模型预测地表沉降,并与随机森林(RF)和BP神经网络的预测结果进行对比,证明LSTM模型的优越性;然后,采用组合权重改进LSTM模型,对比改进前后的地表沉降预测效果;最后,基于改进LSTM地表沉降预测模型,结合粒子群算法,构建改进LSTM-PSO掘进参数优化模型,将其应用于青岛某地铁盾构工程中并验证其可靠性.研究结果表明:1)LSTM模型在拟合精度和泛化能力方面均比RF模型和BP模型表现出更加优越的性能;采用组合权重改进LSTM模型,改进后的模型对地表沉降的预测性能得到了进一步提升.2)采用改进LSTM-PSO模型对掘进参数进行优化后,实际施工中地表沉降监测值均在合理范围内,说明所构建的改进LSTM-PSO掘进参数优化模型具有良好的可靠性和工程实用性.

盾构施工、地表沉降控制、掘进参数、长短期记忆神经网络、粒子群算法

43

U455(隧道工程)

2024-01-19(万方平台首次上网日期,不代表论文的发表时间)

共11页

1985-1995

相关文献
评论
暂无封面信息
查看本期封面目录

隧道建设(中英文)

2096-4498

44-1745/U

43

2023,43(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn