基于VMD-IPSO-RFR模型的光伏发电功率预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11863/j.suse.2020.01.12

基于VMD-IPSO-RFR模型的光伏发电功率预测

引用
针对预测数据噪声过大或超参数调整不当,导致随机森林回归(RFR)模型预测光伏发电功率精度不高的问题,提出一种基于变分模态分解(VMD)结合改进的粒子群(IPSO)优化随机森林回归(RFR)的光伏预测模型.该方法先用灰色关联度系数法(GRA)选取相似日,再使用VMD把相似日功率数据分解为一系列相对平稳的子模态,突出光伏发电功率的局部特征信息,降低数据的不稳定性,然后利用IPSO对RFR中超参数进行寻优,将优化后的IPSO-RFR模型对各个分量进行预测,最后将预测结果进行叠加重构.实例证明,该模型在晴天和阴雨天的预测平均绝对百分比误差分别为10.64%和5.42%,预测精度相对较高.

功率预测;变分模态分解;灰色关联系数法;粒子群算法;随机森林回归

33

TM615(发电、发电厂)

安徽省重点研究与开发计划项目2019.4A05020007

2022-01-13(万方平台首次上网日期,不代表论文的发表时间)

共7页

73-79

相关文献
评论
暂无封面信息
查看本期封面目录

四川理工学院学报(自然科学版)

1673-1549

51-1687/N

33

2020,33(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn