机器学习在河流流量参数估计中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1673-159X.2012.02.018

机器学习在河流流量参数估计中的应用

引用
针对经典水位流量关系模型在刻画河流动态变化特性时存在的局限性,提出采用局部加权回归算法估计河流流量;为了提高参数估计精度,提出一种聚类局部加权回归方法.首先对训练样本进行聚类,然后使用k-最近邻方法将新的水位样本划分进最恰当的聚类中,最后估计河流日流量.该方法在估计过程中,避免了不相关信息的干扰,从而提高了日流量数据估计的效率和精度.利用某水文站的实测数据对方法进行测试,仿真结果表明该方法估计精度较高,为水位流量关系模型参数估计提供了新的有效方法.

水位流量关系、参数估计、局部加权回归、聚类、k-最近邻

31

P333(水文科学(水界物理学))

四川省教育厅重点项目11ZA009;西华大学校重点项目Z1120413;四川省流体机械重点实验室资助项目SBZDPY-11-5

2012-06-27(万方平台首次上网日期,不代表论文的发表时间)

共5页

73-76,80

相关文献
评论
暂无封面信息
查看本期封面目录

西华大学学报(自然科学版)

1673-159X

51-1686/N

31

2012,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn