10.19907/j.0490-6756.2023.012001
一种基于注意力嵌入对抗网络的全色锐化方法
全色锐化旨在将低空间分辨率的多光谱图像和高空间分辨率的全色图像进行融合,生成一幅高空间分辨率的多光谱图像.伴随卷积神经网络的发展,涌现出很多基于CNN的全色锐化方法.这些用于全色锐化的CNN模型大都未考虑不同通道特征和不同空间位置特征对最终锐化结果的影响.并且仅使用基于像素的1-范数或2-范数作为损失函数对锐化结果与参考图像进行评估,易导致锐化结果过于平滑,空间细节缺失.为了解决上述问题,本文提出一种嵌入注意力机制,并辅以空间结构信息对抗损失的生成对抗网络模型.该网络模型由2个部分组成:一个生成器网络模型和一个判别器网络模型.嵌入通道注意力机制和空间注意力机制的生成器将低分辨多光谱图像和全色图像融合为高质量的高分辨多光谱图像.判别器以patch-wise判别的方式对锐化结果与参考图像的梯度进行一致性检验,以确保锐化结果的空间细节信息.最后,在3种典型数据集上的对比实验验证了所提出方法的有效性.
全色锐化、深度学习、注意力机制、生成对抗网络
60
TP751(遥感技术)
2023-03-30(万方平台首次上网日期,不代表论文的发表时间)
共13页
39-51