基于DenseASPP模型的超声图像分割
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0490-6756.2020.04.018

基于DenseASPP模型的超声图像分割

引用
利用超声图像获取胎儿的各项生物指标,对诊断胎儿发育过程中的异常有重要作用.当前主要依靠医生对超声图像的手动测量来确定这些指标.然而,医师手动测量不仅具有主观性,而且在重复作业下效率低下.针对以上问题,提出一种基于DenseASPP模型的超声图像分割改进算法,以辅助医生完成对胎儿各项生物指标的测量.在DenseASPP模型中,首先利用普通卷积预先提取原始图像的特征得到预特征图,再以扩张卷积及金字塔池化结构为基础将前层所有扩张卷积的输出特征图与预特征图拼接在一起传输到下一层扩张卷积以获得更大感受野的多尺度特征图,最终将所有特征合并后通过Attention机制获得相关联的特征,再利用sigmoid函数获取分割结果.分别使用胎儿的头臀径,头围,腹围三个部位的超声图像作为数据集对本文提出的DenseASPP方法进行了评估.实验结果表明,DenseASPP方法优于其他当前常见的分割方法,取得了更好的性能.

超声图像、图像分割、深度学习、扩张卷积

57

TP391(计算技术、计算机技术)

国家自然科学基金61701324

2020-10-28(万方平台首次上网日期,不代表论文的发表时间)

共8页

741-748

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

57

2020,57(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn