基于语义API依赖图的恶意代码检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0490-6756.2020.03.012

基于语义API依赖图的恶意代码检测

引用
传统的恶意代码动态分析方法大多基于序列挖掘和图匹配来进行恶意代码检测,序列挖掘易受系统调用注入的影响,图匹配受限于子图匹配的复杂性问题,并且此类方法并未考虑到样本的反检测行为,如反虚拟机.因此检测效果越来越差.本文设计并提出一种基于程序语义API依赖图的真机动态分析方法,在基于真机的沙箱中来提取恶意代码的API调用序列,从而不受反虚拟机检测的影响.本文的特征构建方法是基于广泛应用于信息理论领域的渐近均分性(AEP)概念,基于AEP可以提取出语义信息丰富的API序列,然后以关键API序列依赖图的典型路径来定义程序行为,以典型路径的平均对数分支因子来定义路径的相关性,利用平均对数分支因子和直方图bin方法来构建特征空间.最后采用集成学习算法-随机森林进行恶意代码分类.实验结果表明,本文所提出的方法可以有效分类恶意代码,精确度达到97.1%.

恶意代码、API依赖图、AEP、真机分析、随机森林

57

TP391.1(计算技术、计算机技术)

国家重点研发计划项目2017YFB0802900

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共7页

488-494

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

57

2020,57(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn