基于深层迁移学习的DR胸片肺结核病灶检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0490-6756.2020.03.008

基于深层迁移学习的DR胸片肺结核病灶检测

引用
针对基于传统机器学习方法设计的DR胸片肺结核检测器存在着泛化能力不强,实际检测精度低等问题,提出了一种基于Focal Loss的深度学习检测方法Tuberculosis Neural Net(TBNN).医学图像的特殊性,存在带标注的数据量小导致无法充分训练深层网络模型等问题.该方法利用肺炎和肺结核同为呼吸道感染疾病且在DR胸片上有相似表征的特点,基于迁移学习原理训练特征提取子网络,减少肺结核胸片样本不足对模型训练造成的影响.首先在大型的肺炎胸片数据集上训练特征提取网络,以获取DR图像中丰富的深层图像语义信息,然后使用样本较少的肺结核数据集微调网络参数,并将多层卷积的输出作为TBNN分类子网络的输入,得到基于DR胸片的肺结核病灶检测模型.实验结果表明,该方法生成的检测模型在分类精度和性能上均优于基于传统机器学习的肺结核检测器.在同等训练数据量和训练周期下,模型性能高于其他采用传统数据增强方法的深层网络肺结核检测算法,且能标识病灶区域,准度上有不低于放射科阅片医生的表现.

深层迁移学习、病灶检测、肺结核、DR胸片、计算机辅助诊断

57

TP391.4(计算技术、计算机技术)

四川省重点研发项目18ZDYF2039

2020-06-04(万方平台首次上网日期,不代表论文的发表时间)

共10页

459-468

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

57

2020,57(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn