10.3969/j.issn.0490-6756.2020.03.008
基于深层迁移学习的DR胸片肺结核病灶检测
针对基于传统机器学习方法设计的DR胸片肺结核检测器存在着泛化能力不强,实际检测精度低等问题,提出了一种基于Focal Loss的深度学习检测方法Tuberculosis Neural Net(TBNN).医学图像的特殊性,存在带标注的数据量小导致无法充分训练深层网络模型等问题.该方法利用肺炎和肺结核同为呼吸道感染疾病且在DR胸片上有相似表征的特点,基于迁移学习原理训练特征提取子网络,减少肺结核胸片样本不足对模型训练造成的影响.首先在大型的肺炎胸片数据集上训练特征提取网络,以获取DR图像中丰富的深层图像语义信息,然后使用样本较少的肺结核数据集微调网络参数,并将多层卷积的输出作为TBNN分类子网络的输入,得到基于DR胸片的肺结核病灶检测模型.实验结果表明,该方法生成的检测模型在分类精度和性能上均优于基于传统机器学习的肺结核检测器.在同等训练数据量和训练周期下,模型性能高于其他采用传统数据增强方法的深层网络肺结核检测算法,且能标识病灶区域,准度上有不低于放射科阅片医生的表现.
深层迁移学习、病灶检测、肺结核、DR胸片、计算机辅助诊断
57
TP391.4(计算技术、计算机技术)
四川省重点研发项目18ZDYF2039
2020-06-04(万方平台首次上网日期,不代表论文的发表时间)
共10页
459-468