一种基于DPI自关联数据包检测分类方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.0490-6756.2019.01.008

一种基于DPI自关联数据包检测分类方法

引用
随着互联网的不断发展,越来越多的非传统业务兴起,由于大量采用迂回机制、加密隐藏技术,使得这些业务变得难以控制管理,影响传统业务的正常性能.现有识别方法普遍采用端口识别以及深度包检测技术DPI,难以识别迂回流量以及加密流量.因此本文提出一种基于DPI自关联检测分类方法,该方法首先通过与样本流之间七元组关联关系识别迂回流量,这部分称为强关联(SA),然后提取检测流特征值,通过本文提出的分类决策函数进行识别,这部分称为弱关联(WA),实验结果表明,该方法能克服DPI技术不能识别迂回流量以及加密流量的缺点,提高业务流识别准确率.

自关联、DPI、关联流量、业务识别

56

TP393(计算技术、计算机技术)

国家重点研发计划2016yfb0800604,2016yfb0800605;国家自然科学基金61572334,U1736212;四川省重点研发项目2018GZ0183

2019-05-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

29-36

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

56

2019,56(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn