基于Griddy-Gibbs抽样的混合高斯AR-GJR-GARCH模型的贝叶斯估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

103969/j.issn.0490-6756.2016.09.001

基于Griddy-Gibbs抽样的混合高斯AR-GJR-GARCH模型的贝叶斯估计

引用
综合考虑波动率的尖峰厚尾性、杠杆效应等特点,作者提出了混合高斯AR-GJR-GARCH模型,并用基于Griddy-Gibbs抽样的MCMC方法对模型的参数进行了贝叶斯估计,然后以新东方的股票数据为例用Matlab和R软件对模型进行了实现与检验.结果表明:模型对波动率的各种特性都有一定的体现,并且估计方法的收敛速度较快、自相关性弱、算法复杂度低、稳定性良好.

混合高斯分布、AR-GJR-GARCH模型、Griddy-Gibbs抽样、MCMC方法

53

O29(应用数学)

2016-12-05(万方平台首次上网日期,不代表论文的发表时间)

共6页

957-962

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(自然科学版)

0490-6756

51-1595/N

53

2016,53(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn