一种Spark作业配置参数智能优化方法
Spark的配置参数对作业运行性能有较大影响,针对配置参数种类多、参数搜索空间大、参数间相互影响导致人工配置参数调优效率低下的问题,提出了一种Spark作业配置参数智能优化方法.首先,在Spark众多配置参数中选择对作业运行性能影响较大的关键配置参数,建立典型Spark作业的运行数据集,利用支持向量回归算法,构建作业性能预测模型,通过改变数据集的规模,对比分析了模型预测值和作业的真实运行时间,模型评估指标证明了作业性能预测模型的有效性和准确性.其次,基于作业性能预测模型,设计并实现了基于爬山算法、模拟退火算法、递归随机搜索算法以及粒子群算法的配置参数优化算法,并对4种算法的求解质量进行对比分析,实验表明递归随机搜索算法在3种不同类型的作业上收敛结果较优且标准差较小,证明该算法对不同类型作业的适应性较强、稳定性较好.将本文的智能优化配置与传统经验优化配置相比,实验结果表明,智能优化配置为典型Spark作业分别带来了4%、15%、22%的平均性能提升,证明智能优化配置能够高效地获取到具备较好作业适应性的配置,提升作业运行性能.
Spark、配置参数、性能预测、智能优化
52
TP302.7(计算技术、计算机技术)
国家自然科学基金青年科学基金项目;中央高校基本科研业务费基础研究项目
2020-05-07(万方平台首次上网日期,不代表论文的发表时间)
共7页
191-197