基于多维时间序列的数控机床状态预测方法研究
随着数控机床结构复杂化以及运行状态数据呈现多样性、时序性的特点,为了有效解决数控机床未来状态难以准确预测的难题,提出一种基于多维时间序列的数控机床状态预测方法.首先,采用OPC(OLE for process control)技术进行数控机床状态数据采集,结合Min-max标准化和自回归移动平均模型完成了数据预处理,建立了多维时间序列状态模型及度量模型,采用特征向量、特征趋势距离标示状态模型,并利用差异度进行多维时间序列状态匹配分析.其次,通过建立时间窗口滑动模型,利用时间窗口长度和滑动时长获取数控机床历史状态集合,进一步提出基于窗口滑动的多重匹配技术,利用β–耦合相似度量标准寻找与当前状态矩阵相似度最大的历史状态集合,并根据相似性阈值得到最优滑动时长和预测时长.然后,采用密度空间聚类算法进行状态序列分析,得到了表征机床当前时刻状态的最佳历史状态矩阵,并以此状态的下一时刻作为预测状态.最后,对数控机床主轴四项参数开展了数控机床状态预测实验,通过状态序列相似性分析得到最佳预测时长为24 s,滑动单位为2 s,并利用状态序列聚类分析完成状态序列匹配.预测结果表明,基于多维时间序列的状态预测方法的最大误差、平均误差、均方误差和相对误差均低于传统的AR预测模型,验证了所提出的状态预测方法的有效性和准确性.
数控机床、多维时间序列、多重匹配、状态预测
50
TH132.4
国家科技重大专项资助2015ZX04001002
2018-02-02(万方平台首次上网日期,不代表论文的发表时间)
共9页
187-195