采用自适应先验表观模型的目标跟踪方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

采用自适应先验表观模型的目标跟踪方法

引用
为有效解决可变目标在跟踪过程中的“漂移”问题,提出一种基于自适应先验表观模型的目标跟踪方法.该方法首先在一致架构内融合HDP-EVO演化聚类模型和在线Boosting学习.以Dirichlet过程为先验分布,对总体表观示例进行聚类分析,获得随时间自适应演化的表观类先验知识,进而利用共享的表观类混合比例的权重平滑约束各时刻的表观模型.改进Gibbs抽样过程,使之能融入目标示例的分类误差,并交替迭代地从数据中自主学习聚类和表观分类器.最后,根据表观模型中各表观类的权重系数组合它们的分类评分去定位目标位置.仿真实验表明新方法学习的表观模型能较鲁棒地自适应于目标的表观变化,提高了跟踪精度.

表观模型、自适应先验、层次Dirichlet过程、聚类分析、分类器

45

TP391(计算技术、计算机技术)

中央高校基本科研业务费资助CDJXS10180004;重庆市自然科学基金资助项目CSTC2008BB2191

2017-01-18(万方平台首次上网日期,不代表论文的发表时间)

共7页

69-75

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(工程科学版)

1009-3087

51-1596/T

45

2013,45(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn