基于ELF静态结构特征的恶意软件检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于ELF静态结构特征的恶意软件检测方法

引用
Linux平台的恶意软件检测方法目前研究较少,主要的分析手段和检测技术依然有很大的局限性。提出了一种基于ELF文件静态结构特征的恶意软件检测方法。通过对Linux平台ELF文件静态结构属性深入分析,提取在恶意软件和正常软件间具有很好区分度的属性,通过特征选择方法约减提取的特征,然后使用数据挖掘分类算法进行学习,使得能正确识别恶意软件和正常文件。实验结果显示,所使用分类算法能够以99.7%的准确率检测已知和未知的恶意软件,且检测时间较短,占用系统资源较少,可实际部署于反病毒软件中使用。

恶意软件检测、结构特征、机器学习、ELF

44

TP309(计算技术、计算机技术)

国家“863”计划资助项目2008AA01Z208;四川省青年基金资助项目09ZQ026-028

2012-12-01(万方平台首次上网日期,不代表论文的发表时间)

共6页

109-114

相关文献
评论
暂无封面信息
查看本期封面目录

四川大学学报(工程科学版)

1009-3087

51-1596/T

44

2012,44(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn