基于多维特征与IGWO-SVM的电机轴承故障诊断
针对电机轴承故障诊断精度低、传统灰狼优化算法(GWO)优化支持向量机(SVM)故障诊断模型容易陷入局部最优的问题,引入非线性收敛因子和Levy飞行策略对改进灰狼优化算法(IGWO)进行研究,提出了一种基于多维特征与改进灰狼优化算法优化支持向量机(IGWO-SVM)的电机轴承故障诊断方法.提取电机轴承振动信号的时域和频域特征构成多维特征矩阵;采用主成分分析(PCA)降低特征矩阵的数据维数,以实现快速数据处理;利用IGWO对SVM模型参数进行优化,得到最优的IGWO-SVM故障诊断模型用于确定电机轴承的故障类型.实验结果表明:所提出的电机轴承故障诊断方法在不同工况下精度高、性能稳定,所提出的IGWO算法与传统GWO和基于差分进化的改进灰狼优化算法(DEGWO)相比,具有更好的收敛性和精度.
电机轴承、主成分分析(PCA)、非线性收敛因子、Levy飞行策略、改进灰狼优化算法(IGWO)、支持向量机(SVM)、故障诊断
44
TH133.33
国家自然科学基金52175078
2023-10-20(万方平台首次上网日期,不代表论文的发表时间)
共7页
149-154,210