D2SE-CNN:改进的SAR图像相干斑抑制算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11809/bqzbgcxb2022.11.014

D2SE-CNN:改进的SAR图像相干斑抑制算法

引用
合成孔径雷达(SAR)的相干成像时,由于存在相干斑噪声,导致图像细节模糊,影响SAR图像的解译等后续应用.结合注意力机制,提出一种改进的下采样卷积神经网络D2SE-CNN.该方法在ID-CNN模型的基础上,去除估计噪声的残差连接;引入下采样,使原图重新排列成四个子图,扩大感受野;并添加挤压与激励块(SE)注意力模块,从而实现相干斑的抑制.为了验证算法的有效性,在BSDS500及NWPUVHR-10数据集和真实SAR图像上与主流方法进行了比较,实验结果表明,所提模型在PSNR、SSIM、ENL、Cv多个评价指标上得到较好的提升.

SAR图像、卷积神经网络、相干斑抑制、挤压与激励块、图像质量增强

43

TJ02;TP75(一般性问题)

国家自然科学基金61876112

2023-01-05(万方平台首次上网日期,不代表论文的发表时间)

共9页

103-111

相关文献
评论
暂无封面信息
查看本期封面目录

兵器装备工程学报

2096-2304

50-1213/TJ

43

2022,43(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn