基于改进CNN的HRRP目标识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11809/bqzbgcxb2022.08.041

基于改进CNN的HRRP目标识别方法

引用
针对HRRP目标识别的传统识别方法识别率低、模型泛化能力不足,提出了一种适合HRRP样本数据的改进CNN模型;采用一维CNN对HRRP样本进行深层特征提取和目标识别,在构建CNN时引入BN算法加快了损失函数的收敛速度;设计了LGBM分类器作为CNN的分类层,有效提高HRRP识别率和识别速度,进一步提升了模型的识别性能;通过与改进前CNN和传统识别方法的对比实验,结果表明所提的改进CNN在提高目标识别率的同时也有效提升了识别速度,可为后续进行HRRP目标识别提供参考.

高分辨距离像、雷达目标识别、卷积神经网络、特征提取、轻量级梯度提升机

43

TN957.52;TP391.4

北京市自然科学基金青年项目;智慧北京各业务信息系统数据结构特征与数据模型详细分类研究

2022-11-07(万方平台首次上网日期,不代表论文的发表时间)

共10页

265-274

相关文献
评论
暂无封面信息
查看本期封面目录

兵器装备工程学报

2096-2304

50-1213/TJ

43

2022,43(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn