基于改进GoogLeNet的飞机尾流快速识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11809/bqzbgcxb2022.07.007

基于改进GoogLeNet的飞机尾流快速识别

引用
为了识别繁忙近地空域中的飞机尾流,提高空中交通管制的智能化水平,结合激光雷达特性和尾流演化特点,通过改进GoogLeNet网络和组合残差结构,提出了一种针对尾流快速识别的卷积神经网络模型.在双流的进离场区域使用多普勒激光雷达对风场进行采样,得到目标区域的径向速度场;所采集的数据预处理后输入到模型分别进行训练、验证、测试.结果表明,相比于AlexNet、GoogLeNet模型,所提出卷积神经网络模型以0.45 M的低参数量在飞机尾流的识别准确度达到98.44%,在实验平台上的检测速度达到160 Fps/s.该模型可在复杂的环境下,快速准确地识别飞机尾涡.

尾流识别、GoogLeNet卷积神经网络、目标识别、多普勒激光雷达、可视化

43

V19;TB872(航空、航天的应用)

国家自然科学基金;中国民航局安全能力建设计划

2022-09-01(万方平台首次上网日期,不代表论文的发表时间)

共7页

38-44

相关文献
评论
暂无封面信息
查看本期封面目录

兵器装备工程学报

2096-2304

50-1213/TJ

43

2022,43(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn