基于重标极差法和神经网络的隧道变形趋势判断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16232/j.cnki.1001-4179.2017.16.012

基于重标极差法和神经网络的隧道变形趋势判断

引用
为准确、科学及全面地对隧道变形进行趋势判断和预测分析,将隧道的变形过程划分为中期阶段和长期阶段,利用R/S分析对其位移序列和速率序列进行趋势判断研究,再利用PSO-BP神经网络对各阶段的变形进行预测,将预测结果与R/S分析结果进行对比,验证两者的一致性.利用两个工程实例进行检验,得出各序列的Hurst指数均大于0.5,说明各序列均具有持续变形的长期性,且位移序列的趋势性均大于速率序列的趋势性;同时,变形预测结果也显示隧道后期变形将持续增加,验证了R/S分析的准确性.

R/S分析、PSO-BP神经网络、趋势判断、隧道变形

48

U455(隧道工程)

2017-09-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

54-59

相关文献
评论
暂无封面信息
查看本期封面目录

人民长江

1001-4179

42-1202/TV

48

2017,48(16)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn