基于样本效率优化的深度强化学习方法综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13328/j.cnki.jos.006391

基于样本效率优化的深度强化学习方法综述

引用
深度强化学习将深度学习的表示能力和强化学习的决策能力结合,因在复杂控制任务中效果显著而掀起研究热潮.以是否用Bellman方程为基准,将无模型深度强化学习方法分为Q值函数方法和策略梯度方法,并从模型构建方式、优化历程和方法评估等方面对两类方法分别进行了介绍.针对深度强化学习方法中样本效率低的问题进行讨论,根据两类方法的模型特性,说明了 Q值函数方法过高估计问题和策略梯度方法采样无偏性约束分别是两类方法样本效率受限的主要原因.从增强探索效率和提高样本利用率两个角度,根据近年来的研究热点和趋势归纳出各类可行的优化方法,分析相关方法的优势和仍存在的问题,并对比其适用范围和优化效果.最后提出增强样本效率优化方法的通用性、探究两类方法间优化机制的迁移和提高理论完备性作为未来的研究方向.

深度强化学习、Q值函数方法、策略梯度方法、样本效率、探索与利用

33

TP18(自动化基础理论)

国家重点研发计划;国家自然科学基金;吉林省自然科学基金

2022-11-18(万方平台首次上网日期,不代表论文的发表时间)

共22页

4217-4238

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

33

2022,33(11)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn