基于AdaGrad的自适应NAG方法及其最优个体收敛性
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13328/j.cnki.jos.006464

基于AdaGrad的自适应NAG方法及其最优个体收敛性

引用
与梯度下降法相比,自适应梯度下降方法(AdaGrad)利用过往平方梯度的算数平均保存了历史数据的几何信息,在处理稀疏数据时获得了更紧的收敛界.另一方面,Nesterov加速梯度方法(Nesterov's accelerated gradient,NAG)在梯度下降法的基础上添加了动量运算,在求解光滑凸优化问题时具有数量级加速收敛的性能,在处理非光滑凸问题时也获得了最优的个体收敛速率.最近,已经出现了自适应策略与NAG相结合的研究,但现有代表性的自适应NAG方法AcceleGrad由于采取的自适应方式与AdaGrad不同,步长未能在不同维度上体现差异性,仅得到了加权平均方式的收敛速率,个体收敛速率的理论分析尚存在缺失.提出了一种自适应NAG方法,继承了AdaGrad的步长设置方式,证明了所提算法在解决约束非光滑凸优化问题时具有最优的个体收敛速率.在L1范数约束下,通过求解典型的hinge损失函数分类和L1损失函数回归优化问题.实验验证了理论分析的正确性,也表明了所提算法的性能优于AcceleGrad.

机器学习、凸优化、自适应算法、NAG方法、个体收敛速率

33

TP18(自动化基础理论)

国家自然科学基金;国家自然科学基金

2022-04-20(万方平台首次上网日期,不代表论文的发表时间)

共13页

1231-1243

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

33

2022,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn