基于自监督知识的无监督新集域适应学习
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13328/j.cnki.jos.006478

基于自监督知识的无监督新集域适应学习

引用
无监督域适应(unsupervised domain adaptation,UDA)旨在利用带大量标注数据的源域帮助无任何标注信息的目标域学习.在UDA中,通常假设源域和目标域间的数据分布不同,但共享相同的类标签空间.但在真实开放学习场景中,域间的标签空间很可能存在差异.在极端情形下,域间的类别不存在交集,即目标域中类别都为新未知类别.此时若直接迁移源域的类判别知识,可能会损害目标域性能,导致负迁移问题.为此,提出了基于自监督知识的无监督新集域适应(unsupervised new-set domain adaptation with self-supervised knowledge,SUNDA)方法,迁移源域的样本对比知识;同时,利用目标域的自监督知识指导知识迁移.首先,通过自监督学习源域和目标域初始特征,并固定部分网络参数用于保存目标域信息.再将源域的样本对比知识迁移至目标域,辅助目标域学习类判别特征.此外,利用基于图的自监督分类损失,解决域间无共享类别时目标域的分类问题.在手写体数字的无共享类别跨域迁移和人脸数据的无共享类别跨种族迁移任务上对SUNDA进行评估,实验结果表明,SUNDA的学习性能优于无监督域适应、无监督聚类以及新类别发现方法.

无监督域适应、自监督学习、标签空间、类对比知识

33

TP181(自动化基础理论)

国家自然科学基金;国家自然科学基金;国家自然科学基金;中国博士后科学基金;工信部模式分析与机器智能重点实验室开放基金;江苏省高等学校自然科学研究面上项目

2022-04-20(万方平台首次上网日期,不代表论文的发表时间)

共13页

1170-1182

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

33

2022,33(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn