高精度的大规模程序数据竞争检测方法
随着技术的不断发展,软件系统的非确定性(uncertainty)不断增强,数据竞争是并发系统这一类典型的非确定性软件系统中常见的缺陷.尽管数据竞争静态检测近年来取得了巨大进展,但其面临的重要问题仍然存在.先前的静态技术要么以分析精度为代价达到高扩展性,要么由于高精度分析而导致可扩展性问题.提出一种解决上述矛盾的分段分析方法——GUARD.它首先基于程序值流进行轻量级上下文敏感的数据访问分析,以识别出候选的数据竞争子路径而非完整的程序路径.接下来,进行可能并行执行(may-happen-in-parallel,即MHP)分析来确定程序中的两个数据访问操作是否可能会同时执行.MHP分析基于线程流图(TFG)将线程信息进行编码以便于高效地查询各个子路径之间的并发关系.最后,对于每条存在MHP数据访问的子路径,进行重量级路径敏感分析以确定数据竞争路径的可行性.针对12个开源项目的 实验评估显示,GUARD能够在1870s内完成对130万行代码的工业规模项目的 检测,且平均误报率为16.0%.此外,GUARD的分析速度更快,比现有的前沿技术平均快了6.08倍,并且显著降低了误报率.除此之外,GUARD在其中还发现了12个数据竞争漏洞.将它们全部报告给了开发者,其中8个已得到了确认.
数据竞争、MHP分析、静态分析
32
TP311(计算技术、计算机技术)
国家自然科学基金62032010
2021-07-26(万方平台首次上网日期,不代表论文的发表时间)
共17页
2039-2055