轨迹表示学习技术研究进展
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13328/j.cnki.jos.006210

轨迹表示学习技术研究进展

引用
基于地理位置信息的应用和服务的迅速发展,对轨迹数据挖掘提出了新的需求和挑战.原始轨迹数据通常是由坐标-时间戳元组构成的有序序列,而现有的大多数数据分析算法均要求输入数据位于向量空间中.因此,为了将轨迹数据从变长的坐标-时间戳序列转化成定长的向量表示且保持原有的特征,对轨迹数据进行有效的表示是十分重要且必要的一步.传统的轨迹表示方法大多是基于人工设计特征,通常仅将轨迹表示作为数据预处理的一部分.随着深度学习的兴起,这种从大规模数据中学习的能力使得基于深度学习的轨迹表示方法相比于传统方法取得了巨大的效果提升,并赋予了轨迹表示更多的可能性.对轨迹表示领域中的研究进展进行了全面的总结,将轨迹表示按照研究对象的不同尺度,归纳为对轨迹单元的表示和对整条轨迹的表示两大类别,并在每种类别下对不同原理的方法进行了对比分析.其中重点分析了基于轨迹点的表示方法,也对近年来广泛使用的基于神经网络的轨迹表示的研究成果做了系统的归类.此外,介绍了基于轨迹表示的关键应用,最后对轨迹表示领域的未来研究方向进行了展望.

轨迹数据挖掘、轨迹表示、时空数据挖掘

32

TP181(自动化基础理论)

国家自然科学基金;实验室开放基金

2021-06-02(万方平台首次上网日期,不代表论文的发表时间)

共19页

1461-1479

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

32

2021,32(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn