基于全局排序的高维多目标优化研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.13328/j.cnki.jos.004612

基于全局排序的高维多目标优化研究

引用
目标数超过4的高维多目标优化是目前进化多目标优化领域求解难度最大的问题之一,现有的多目标进化算法求解该类问题时,存在收敛性和解集分布性上的缺陷,难以满足实际工程优化需求.提出一种基于全局排序的高维多目标进化算法GR-MODE,首先,采用一种新的全局排序策略增强选择压力,无需用户偏好及目标主次信息,且避免宽松Pareto支配在排序结果合理性与可信性上的损失;其次,采用Harmonic平均拥挤距离对个体进行全局密度估计,提高现有局部密度估计方法的精确性;最后,针对高维多目标复杂空间搜索需求,设计新的精英选择策略及适应度值评价函数.将该算法与国内外现有的5种高性能多目标进化算法在标准测试函数集DTLZ{1,2,4,5}上进行对比实验,结果表明,该算法具有明显的性能优势,大幅提升了4~30维高维多目标优化的收敛性和分布性.

高维多目标优化、宽松Pareto支配、全局排序

26

TP301(计算技术、计算机技术)

国家自然科学基金61175126;教育部博士学科点基金20112304110009;辽宁省教育厅科学研究一般项目L2012458;辽宁省博士科研启动基金2012010339-401;黑龙江省博士后基金LBH-Z12073

2016-08-19(万方平台首次上网日期,不代表论文的发表时间)

共10页

1574-1583

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

26

2015,26(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn