可伸缩的增量连续k近邻查询处理
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

可伸缩的增量连续k近邻查询处理

引用
针对基于TPR树(time-parameterized R-tree)索引的大量并发CKNN(continuous k-nearest neighbor)查询处理,提出了一种可伸缩的增量连续k近邻查询处理(scalable processing of incremental continuous k-nearest neighbor queries,简称SI-CNN)框架,通过引入搜索区域进行预裁剪以减少查询更新所需要的TPR树节点访问代价,并引入了增量结果表以保存候选对象,批量地更新查询结果集,具有良好的可伸缩性.基于SI-CNN框架提出了一种增量更新的SI-CNN查询处理算法,能够基于上次查询结果增量的更新查询,支持查询集合中加入或删除查询和移动对象数据集的插入、删除等动态更新操作.实验结果与分析表明,基于SI-CNN框架的SI-CNN算法可以很好地支持大量并发的CKNN查询处理,具有良好的实用价值.

连续k近邻查询、TPR树、SI-CNN框架、SI-CNN算法、增量处理

18

TP311(计算技术、计算机技术)

国家自然科学基金60472031

2007-04-02(万方平台首次上网日期,不代表论文的发表时间)

共11页

268-278

相关文献
评论
暂无封面信息
查看本期封面目录

软件学报

1000-9825

11-2560/TP

18

2007,18(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn