可伸缩的增量连续k近邻查询处理
针对基于TPR树(time-parameterized R-tree)索引的大量并发CKNN(continuous k-nearest neighbor)查询处理,提出了一种可伸缩的增量连续k近邻查询处理(scalable processing of incremental continuous k-nearest neighbor queries,简称SI-CNN)框架,通过引入搜索区域进行预裁剪以减少查询更新所需要的TPR树节点访问代价,并引入了增量结果表以保存候选对象,批量地更新查询结果集,具有良好的可伸缩性.基于SI-CNN框架提出了一种增量更新的SI-CNN查询处理算法,能够基于上次查询结果增量的更新查询,支持查询集合中加入或删除查询和移动对象数据集的插入、删除等动态更新操作.实验结果与分析表明,基于SI-CNN框架的SI-CNN算法可以很好地支持大量并发的CKNN查询处理,具有良好的实用价值.
连续k近邻查询、TPR树、SI-CNN框架、SI-CNN算法、增量处理
18
TP311(计算技术、计算机技术)
国家自然科学基金60472031
2007-04-02(万方平台首次上网日期,不代表论文的发表时间)
共11页
268-278