基于VMD-MPE结合概率神经网络和极限学习机的滚动轴承故障诊断分析
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.14158/j.cnki.1001-3814.20203340

基于VMD-MPE结合概率神经网络和极限学习机的滚动轴承故障诊断分析

引用
为揭示滚动轴承的多参量故障特性,提出了变分模态分解和多尺度排列熵相结合的方法进行特征提取并通过不同的算法进行故障诊断.首先对滚动轴承故障信号进行变分模态分解,其次利用多尺度排列熵量化各模态分量的故障特征,最后对计算所得熵值组成特征向量集将其导入概率神经网络、极限学习机和支持向量机中进行诊断,对比分析测试时间和正确概率.结果表明,该方法能有效提取故障特征并且准确实现故障模式的分类识别,进而提高了故障识别概率.

变分模态分解、多尺度排列熵、极限学习机、故障诊断

51

TG142(金属学与热处理)

国家自然科学基金;自治区科技支疆计划项目

2022-06-28(万方平台首次上网日期,不代表论文的发表时间)

共7页

157-163

相关文献
评论
暂无封面信息
查看本期封面目录

热加工工艺

1001-3814

61-1133/TG

51

2022,51(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn