基于BP神经网络的前轴锻压工艺优化
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.14158/j.cnki.1001-3814.20190850

基于BP神经网络的前轴锻压工艺优化

引用
以始锻温度、终锻温度、锻压比和前轴材质4个参数作为输入层函数,以耐磨损性能和疲劳性能作为输出层函数,采用4×16×8×2四层拓扑结构构建了前轴锻压工艺的神经网络优化模型,并进行了训练、预测和验证.结果 表明,神经网络的耐磨损性能相对训练误差在3.2%~5.7%、疲劳性能相对训练误差在3.2%~5.5%;耐磨损性能的相对预测误差在2.6%~4.2%、平均相对预测误差为3.15%,疲劳性能的相对预测误差在2.6%~4.1%、平均相对预测误差为3.17%.

BP神经网络、前轴、锻压工艺优化、磨损性能、疲劳性能

49

TG316(金属压力加工)

2020-11-13(万方平台首次上网日期,不代表论文的发表时间)

共4页

115-117,121

相关文献
评论
暂无封面信息
查看本期封面目录

热加工工艺

1001-3814

61-1133/TG

49

2020,49(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn