基于压缩激励残差神经网络的轴承损伤诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1001-0785.2022.05.016

基于压缩激励残差神经网络的轴承损伤诊断

引用
滚动轴承是旋转机械的重要零件之一,文中针对滚动轴承损伤类型有效识别问题,提出了一种基于压缩激励残差神经网络的滚动轴承损伤诊断方法.本方法对轴承原始振动信号使用连续小波变换提取特征,形成二维时频样本,再利用样本对压缩激励残差神经网络进行训练,最后在全连接层使用Softmax分类器实现对轴承损伤的分类.用QPZZ-Ⅱ旋转机械振动损伤实验平台数据验证模型性能.实验结果表明:该方法对不同负载下滚动轴承损伤识别的准确率达99.95%,具有良好的泛化性和鲁棒性.

滚动轴承、小波变换、压缩激励残差神经网络、损伤诊断

TH133.33

国家自然科学基金51675350

2022-04-11(万方平台首次上网日期,不代表论文的发表时间)

共6页

30-34,70

相关文献
评论
暂无封面信息
查看本期封面目录

起重运输机械

1001-0785

11-1888/TH

2022,(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn