基于遗传算法的特征选择方法在短时强降水预报中的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12306/2021jms.0031

基于遗传算法的特征选择方法在短时强降水预报中的应用

引用
利用江苏省13个气象观测站历史上短时强降水观测资料,用遗传算法进行特征选择,选定影响短时强降水的950 hP a假相当位温、700 hP a比湿、500 hP a比湿、对流有效势能(Convective Available Potential Energy,CAPE)等14个特征为主要因素,将是否为短时强降水抽象成二元分类问题.借助机器学习中CART决策树算法进行分类分析,构建便于使用的短时强降水预报规则集.实验部分,随机选择5816条样本进行训练模型,得到适合江苏地区的短时强降水规则集,利用剩余的1454条数据进行实际检验,模型的短时强降水预报准确率为91.35%,非强降水预报准确率为97.11%,较特征选择之前分别提升了8.66%和1.05%.

短时强降水、预报模型、特征选择、遗传算法、CART决策树

43

P457.6(天气预报)

北极阁开放研究基金;国家自然科学基金

2023-05-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

126-134

相关文献
评论
暂无封面信息
查看本期封面目录

气象科学

1009-0827

32-1243/P

43

2023,43(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn