北京地区体感温度误差订正方法研究
基于欧洲中期天气预报中心(European Centre for Medium-range weather Forecasts,ECMWF)模式的预报数据和北京地区气象站点的观测数据,使用两种机器学习算法(线性回归和梯度提升回归树)对站点的体感温度进行误差订正,并采用均方根误差(Root Mean Square Error,RMSE)对预报效果进行评估,进一步与传统订正方法模式输出统计(Model Output Statistics,MOS)得到的订正结果进行对比.结果表明:线性回归、梯度提升回归树、MOS和ECMWF预报得到的平均RMSE分别为3.12、3.06、3.45、4.06℃,即机器学习算法明显优于MOS和ECMWF模式原始预报.机器学习订正方法不仅在平原地区取得了较好的效果,在高海拔站点的订正效果更加突出,为北京冬奥会复杂山地条件下赛事正常运行提供了一定的技术保障.
误差订正、机器学习、体感温度、北京地区、梯度提升回归树
42
P49(应用气象学)
中国科学院战略性先导科技专项XDA19040202
2022-07-01(万方平台首次上网日期,不代表论文的发表时间)
共9页
261-269