北京地区体感温度误差订正方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12306/2020jms.0043

北京地区体感温度误差订正方法研究

引用
基于欧洲中期天气预报中心(European Centre for Medium-range weather Forecasts,ECMWF)模式的预报数据和北京地区气象站点的观测数据,使用两种机器学习算法(线性回归和梯度提升回归树)对站点的体感温度进行误差订正,并采用均方根误差(Root Mean Square Error,RMSE)对预报效果进行评估,进一步与传统订正方法模式输出统计(Model Output Statistics,MOS)得到的订正结果进行对比.结果表明:线性回归、梯度提升回归树、MOS和ECMWF预报得到的平均RMSE分别为3.12、3.06、3.45、4.06℃,即机器学习算法明显优于MOS和ECMWF模式原始预报.机器学习订正方法不仅在平原地区取得了较好的效果,在高海拔站点的订正效果更加突出,为北京冬奥会复杂山地条件下赛事正常运行提供了一定的技术保障.

误差订正、机器学习、体感温度、北京地区、梯度提升回归树

42

P49(应用气象学)

中国科学院战略性先导科技专项XDA19040202

2022-07-01(万方平台首次上网日期,不代表论文的发表时间)

共9页

261-269

相关文献
评论
暂无封面信息
查看本期封面目录

气象科学

1009-0827

32-1243/P

42

2022,42(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn