10.3969/j.issn.1006-9585.2007.06.010
重庆市区雾的天气特征分析及预报方法研究
分析了重庆市区雾的特点、天气特征及温、湿等气象要素垂直分布特征,利用重庆站的观测资料选取适当的诊断因子,采用动态学习率BP算法的人工神经网络对重庆市区能见度进行了拟合和预报检验.研究表明:55年以来,重庆年雾日数总体呈逐年下降趋势,同时轻雾日数急剧上升,这种变化可能主要与城市热岛效应增强和空气污染状况加重有关;发展成熟的辐射雾大多具有逆温的稳定结构,雾顶上下温度、湿度存在明显跃变特征;神经网络模型具有较强的自适应学习和非线性映射能力,对能见度为0~1 km雾的报出率为83%,T,评分达到69%,平均预报误差为0.384 km.除常规气象要素外,通过M指数、Ri数、凝结核、辐射状况和其他物理量的引入,以及对因子网络输入值的技术处理,明显提高了神经网络对雾尤其浓雾的预报能力,其对能见度在0.4 km以下浓雾预报的T,评分可达89.5%.模型结果对重庆市区雾的预报具有良好的参考价值.
雾、能见度、天气特征、神经网络、诊断因子
12
P426.4(气象基本要素、大气现象)
科技部科研院所社会公益研究专项基金2004DIB3J100;国家气象中心自筹资金项目ZK2007-0501
2008-07-15(万方平台首次上网日期,不代表论文的发表时间)
共9页
795-803