基于YOLOv5的钢材数量识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19981/j.CN23-1581/G3.2023.01.016

基于YOLOv5的钢材数量识别方法

引用
传统工业建材计数工作一直由人工完成,手工计数方法易受到统计人员的状态影响,无法满足现代化建筑快速工业需求.为解决这一难题,该文提出一种基于YOLOv5的钢材图像计数算法.首先,对钢材技术问题进行分析,明确任务重点难点及工业部署硬件设备需求;同时,根据钢材数据特性搭建YOLO目标检测网络,对钢材数据进行预处理以保证目标特征表达;最后,对模型性能进行测试验证.实验结果表明,该文算法平均检测精度可达98.7%以上,模型准确率可达98.9%,较好完成钢材计数检测任务,且具有一定鲁棒性.

深度学习、钢材计数、YOLOv5、目标检测、识别算法

13

TP391(计算技术、计算机技术)

2023-01-16(万方平台首次上网日期,不代表论文的发表时间)

共4页

69-72

相关文献
评论
暂无封面信息
查看本期封面目录

科技创新与应用

2095-2945

23-1581/G3

13

2023,13(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn