持续学习算法在车辆目标识别上的应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16638/j.cnki.1671-7988.2023.015.013

持续学习算法在车辆目标识别上的应用

引用
自动驾驶汽车技术的日新月异,主要得益于深度学习和人工智能的进步.然而深度学习模型大多是在静态同分布数据集上进行训练,无法随着时间而适应或扩展其行为.针对这一问题,论文将持续学习模型运用于车辆目标识别领域进行研究.首先搭建可以使得算法流畅运行的环境,选定目标识别的原始图像数据集;在分析现有评估指标的基础上,选取适合于本次实验的评估指标,并采用卷积神经网络(CNN)、最接近类均值(NCM)、增量分类器与特征表示(iCaRL)三种持续学习算法对原始图像数据集进行学习训练与对比验证,通过实验验证了应用iCaRL算法使机器进行持续学习训练时,其精度和效率均优于其他两种方法.针对智能驾驶目标识别图像数据集不完善这一问题,构建了一个新的图像数据集,包含车辆、行人、交通标志及信号灯,将iCaRL算法应用于新建图像数据集进行研究,并在新建智能驾驶图像数据集上进行了训练与测试.结果表明,采用iCaRL算法能够较好地学习新建图像数据集,不会因为环境的改变而使得其性能发生大幅变化,测试结果良好,证明该方法可以在智能驾驶领域进行目标识别.

持续学习、iCaRL算法、车辆目标识别、图像数据集

48

U27;TP39(车辆工程)

2023-08-21(万方平台首次上网日期,不代表论文的发表时间)

共9页

73-81

相关文献
评论
暂无封面信息
查看本期封面目录

汽车实用技术

1671-7988

61-1394/TH

48

2023,48(15)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn