基于深度学习的快速车道线检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.16638/j.cnki.1671-7988.2023.05.006

基于深度学习的快速车道线检测方法

引用
针对目前基于深度学习的车道线检测方法普遍存在的实时性较差的问题,文章中提出了一种高效的车道线检测方法LaneBezierNet.该方法从前置摄像头获取图像后,先使用数据增强技术对图像进行处理,然后通过贝塞尔曲线回归模型直接输出图像中每条车道线的贝塞尔曲线控制点坐标,结合贝塞尔曲线方程便可以得到车道线上的每个坐标点信息.实验结果表明,在Tusimple公开数据集上达到了92.89%的较高准确率的同时,每秒传输帧数(FPS)达到了116 bits/s.相较于基于图像分割的车道线检测方法,该方法在检测速度上有着明显提升.该算法在检测准确率未明显下降的前提下极大地提升了检测效率,更加符合实际项目需求.

车道线检测、EfficientNet、残差网络、贝塞尔曲线

48

TP391(计算技术、计算机技术)

2023-03-23(万方平台首次上网日期,不代表论文的发表时间)

共6页

34-39

相关文献
评论
暂无封面信息
查看本期封面目录

汽车实用技术

1671-7988

61-1394/TH

48

2023,48(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn