基于交互式多模型和容积卡尔曼滤波的汽车状态估计
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19562/j.chinasae.qcgc.2017.09.001

基于交互式多模型和容积卡尔曼滤波的汽车状态估计

引用
基于UniTire轮胎模型建立了包含时变噪声统计特性的汽车动力学7自由度整车模型.针对系统状态噪声和观测噪声统计特性未知的问题,提出了一种基于交互式多模型和容积卡尔曼滤波(IMM-CKF)车辆状态估计算法.该算法采用包含不同系统状态噪声和观测噪声统计特性的汽车动力学模型作为交互式多模型算法的模型集,用容积卡尔曼滤波器对每个子模型的车辆状态进行估计,并使融合输出结果始终保持跟踪估计误差小的子模型输出.最后利用实车场地环境下多种驾驶工况的测试数据对IMM-CKF算法进行离线验证,并与容积卡尔曼滤波器的估计结果进行对比,结果表明其估计性能优于容积卡尔曼滤波器.

汽车动力学、容积卡尔曼滤波、交互式多模型、汽车状态估计

39

TP1;TN7

国家自然科学基金51275206

2017-11-07(万方平台首次上网日期,不代表论文的发表时间)

共7页

977-983

相关文献
评论
暂无封面信息
查看本期封面目录

汽车工程

1000-680X

11-2221/U

39

2017,39(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn