文本分类中一种基于密度的KNN改进方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3772/j.issn.1000-0135.2009.06.006

文本分类中一种基于密度的KNN改进方法

引用
特征降维与分类算法的性能是文本自动分类的两个主要问题.KNN算法以其简单、有效、非参数特点常用于文本分类,但是训练文本分布的不均匀对KNN的分类效果产生负面影响,而在实际应用中训练文本分布不均是常见现象.本文针对这种分类环境,首先提出了一种改进的tf-idf赋权方法用于特征降维,在此基础上进一步提出了一种基于密度的改进KNN方法用于文本分类, 使处于样本点分布较密集区域的样本点之间的距离增大.随后的文本分类试验表明,本文提出的方法基于密度的KNN方法具有较好的文本分类效果.

tf-idf、文本分类、KNN算法、特征降维

28

TP3;TP1

基金项目:国家自然科学基金资助项目70571087

2009-12-22(万方平台首次上网日期,不代表论文的发表时间)

共5页

834-838

相关文献
评论
暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

28

2009,28(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn