基于机器学习的文本聚类描述算法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3772/j.issn.1000-0135.2009.02.011

基于机器学习的文本聚类描述算法研究

引用
传统的聚类算法直接用于文本聚类这一应用上,存在的突出问题就是传统的聚类算法只负责将对象进行聚类,不负责对聚类后生成的类簇进行概念描述和解释.标注文本集合聚类后生成的类簇被称为聚类描述问题.聚类描述可以帮助用户迅速确认生成的文档类别与其需求是否相关,它是文本聚类应用中一项重要并富有挑战性的任务.针对文本聚类结果可读性较弱问题,本文提出了一种增强聚类结果的可理解性与可读性的算法,即基于支持向量机的文本聚类结果描述算法.实验结果表明基于支持向量机的聚类描述算法所取得的效果要优于常规的聚类结果描述方法.

聚类描述、文本聚类、支持向量机、机器学习

28

TP3;TU-

"十一五"国家科技支撑计划重点项目2006BAH03B02;南京理工大学青年科研扶持基金项目JGQN0701;南京理工大学科研启动基金项目AB41123;2006年江苏省研究生培养创新工程项目资助

2009-05-08(万方平台首次上网日期,不代表论文的发表时间)

共8页

225-232

相关文献
评论
暂无封面信息
查看本期封面目录

情报学报

1000-0135

11-2257/G3

28

2009,28(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn