10.3969/j.issn.1674-8530.2011.01.014
基于不变矩和神经网络的泵机组轴心轨迹自动识别
基于泵机组故障信号处理的需要,介绍了不变矩原理,同时对神经网络建模,包括其样本获取进行了详细讨论;由于泵机组的多种故障与表征其运行状态的轴心轨迹形状有关,根据不变矩的平移、伸缩和旋转不变性特征,对实时检测的轴心摆度信号进行不变矩处理,利用BP型神经网络对其进行模式识别,进而判断出轴心轨迹的形状.为了弥补泵机组用于神经网络训练样本的不足,采用数值模拟与现场测试相结合的方法,将获取的所有样本进行求不变矩处理,并连同样本对应的实际形状作为神经网络的训练样本.网络训练完成后,将其输出结果与轴心轨迹图形进行比较验证.以山西大禹渡泵站水泵机组故障检测及诊断为例,在样本中选取其中的10组数据,比较的结果表明神经网络自动识别的结果准确.该方法为泵机组轴心轨迹自动识别和实现泵机组故障诊断智能化提供了依据.
轴心轨迹、自动识别、不变矩、BP神经网络、泵机组
29
S277.9;TV675(农田水利)
"十一五"国家科技支撑计划重点项目2006BAD11B07
2011-05-25(万方平台首次上网日期,不代表论文的发表时间)
共5页
67-71