基于贪婪算法与随机森林算法的大米产地确证方法研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19754/j.nyyjs.20221015004

基于贪婪算法与随机森林算法的大米产地确证方法研究

引用
为解决现阶段地标大米产地确证系统中大米特征元素较多、产地确证成本较高的问题,本文以大米中Cu、Zn、Mn、Fe、Ca、K、Mg、Na、Cd、Pb 10种矿物质元素含量为数据基础,通过贪婪算法筛选元素指标,并依托随机森林算法构建地标大米产地确证模型.结果表明,以贪婪算法筛选的8种元素指标构建的随机森林模型判别准确率是96%,相比10种矿物质元素指标具有更好的产地判别精度,同时降低了产地确证成本.

贪婪算法、随机森林、混淆矩阵、产地确证

42

S126(农业物理学)

吉林省重点科技研发项目20180201051NY

2022-10-21(万方平台首次上网日期,不代表论文的发表时间)

共4页

17-20

相关文献
评论
暂无封面信息
查看本期封面目录

农业与技术

1671-962X

22-1159/S

42

2022,42(19)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn