基于多时相SAR数据的水稻面积提取
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.19754/j.nyyjs.20220630008

基于多时相SAR数据的水稻面积提取

引用
合成孔径雷达(SAR)由于不受天气影响,具有全天候、全天时高分辨率成像的能力,以及对某些地物的穿透探测,因此在南方多云雨地区的农作物监测方面有着很大的应用潜力.本文以江苏省盐城市阜宁县为研究区域,采用当地水稻生长周期内的长时间序列Sentinel-1A影像作为数据源,利用监督分类中的支持向量机(SVM)对SAR影像进行分类,与利用VV和VH极化组合进行后向散射系数阈值分类的方法作比较.结果表明,阈值分类方法优于监督分类方法,其总体精度为89.48%,Kappa系数为0.8184,水稻提取面积为672.65km2,相对误差为11.48%.由此可得,对不同极化组合的长时间序列SAR数据进行阈值分类可以更高效地识别地物信息,在水稻面积提取方面有独特的优势.

水稻面积、长时间序列、SVM分类、阈值分类

42

S29(农业工程勘测、土地测量)

国家自然科学基金31700369

2022-07-08(万方平台首次上网日期,不代表论文的发表时间)

共4页

32-35

相关文献
评论
暂无封面信息
查看本期封面目录

农业与技术

1671-962X

22-1159/S

42

2022,42(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn