基于多时相SAR数据的水稻面积提取
合成孔径雷达(SAR)由于不受天气影响,具有全天候、全天时高分辨率成像的能力,以及对某些地物的穿透探测,因此在南方多云雨地区的农作物监测方面有着很大的应用潜力.本文以江苏省盐城市阜宁县为研究区域,采用当地水稻生长周期内的长时间序列Sentinel-1A影像作为数据源,利用监督分类中的支持向量机(SVM)对SAR影像进行分类,与利用VV和VH极化组合进行后向散射系数阈值分类的方法作比较.结果表明,阈值分类方法优于监督分类方法,其总体精度为89.48%,Kappa系数为0.8184,水稻提取面积为672.65km2,相对误差为11.48%.由此可得,对不同极化组合的长时间序列SAR数据进行阈值分类可以更高效地识别地物信息,在水稻面积提取方面有独特的优势.
水稻面积、长时间序列、SVM分类、阈值分类
42
S29(农业工程勘测、土地测量)
国家自然科学基金31700369
2022-07-08(万方平台首次上网日期,不代表论文的发表时间)
共4页
32-35