最大似然分类的训练样本敏感度研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.12105/j.issn.1672-0423.20180207

最大似然分类的训练样本敏感度研究

引用
[目的]遥感影像监督分类能够快速获取土地利用和地表覆盖的信息,分类样本的选取对分类精度具有决定性的作用.以最大似然分类方法为例,研究样本数量、均值和标准差对分类精度的影响.[方法]基于地表覆盖产品GlobeLand30分层随机选取不同数量的训练样本,采用最大似然法对研究区域的Landsat8遥感影像进行分类.通过谷歌地球高分影像选取一定数量的检验样本,对影像分类结果进行精度评价,并研究样本数量、均值和标准差对分类结果的影响.[结果]不同数量的训练样本得到的分类精度不同,分类精度随着样本数量的增加先增加后下降,然后渐趋于稳定;在样本质量特征方面,当训练样本的均值和标准差越接近检验样本的均值和标准差时,分类结果的精度越高,反之则分类精度较低.[结论]在最大似然分类过程中,训练样本数量的选取存在临界值,当达到临界值时即可获得较高分类精度,随后即使增加样本的数量也无法显著提高分类结果的精度.在样本质量方面,要尽量选取能够反映地物真实特征的训练样本进行分类.

最大似然分类、样本数量、样本均值、样本标准差、分类精度

30

中央级公益性科研院所基本科研业务费专项1610132018017

2018-10-18(万方平台首次上网日期,不代表论文的发表时间)

共10页

76-85

相关文献
评论
暂无封面信息
查看本期封面目录

中国农业信息

1672-0423

11-4922/S

30

2018,30(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn