基于机器学习的小麦收获机掉头轨迹识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2023.09.003

基于机器学习的小麦收获机掉头轨迹识别

引用
识别小麦收获机运行轨迹是分析农业机械活动、提高作业效率的重要手段.本文针对小麦收获机田内作业场景,提出一种基于机器学习的收获机掉头轨迹识别算法.首先通过两步K-means聚类与三步修正识别出X形掉头轨迹点、作业异常轨迹点与作业轨迹点;为进一步从作业轨迹中分类出U形掉头轨迹点,构建了基于支持向量机模型(Support vector machine,SVM)的U形掉头轨迹识别算法,并对初步识别结果进行三步修正;最终识别出小麦收获机的田内X形掉头、作业异常、U形掉头与作业轨迹点,识别结果的F1值为94%,时间间隔为1~5 s的数据的F1值在90%以上,实现田内轨迹的细致划分.基于去除掉头轨迹与异常轨迹后获得的有效作业轨迹,可通过距离算法计算获得农田面积,结果相比使用原始轨迹的计算误差可降低12.76%.该研究可为基于海量农机轨迹的作业精细化管理提供参考.

小麦收获机、轨迹识别、机器学习、掉头、SVM

54

S126(农业物理学)

国家精准农业应用项目JZNYYYO01

2023-10-10(万方平台首次上网日期,不代表论文的发表时间)

共8页

27-34

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

54

2023,54(9)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn