基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2023.06.021

基于改进Faster R-CNN和Deep Sort的棉铃跟踪计数

引用
棉铃作为棉花重要的产量与品质器官,单株铃数、铃长、铃宽等相关表型性状一直是棉花育种的重要研究内容.为解决由于叶片遮挡导致传统静态图像检测方法无法获取全部棉铃数量的问题,提出了一种以改进Faster R-CNN、Deep Sort和撞线匹配机制为主要算法框架的棉铃跟踪计数方法,以实现在动态视频输入情况下对盆栽棉花棉铃的数量统计.采用基于特征金字塔的Faster R-CNN目标检测网络,融合导向锚框、Soft NMS等网络优化方法,实现对视频中棉铃目标更精确的定位;使用Deep Sort跟踪器通过卡尔曼滤波和深度特征匹配实现前后帧同一目标的相互关联,并为目标进行ID匹配;针对跟踪过程ID跳变问题设计了掩模撞线机制以实现动态旋转视频棉铃数量统计.试验结果表明:改进Faster R-CNN目标检测结果最优,平均测量精度mAP75和F1值分别为0.97和0.96,较改进前分别提高0.02和0.01;改进Faster R-CNN和Deep Sort跟踪结果最优,多目标跟踪精度为0.91,较Tracktor和Sort算法分别提高0.02和0.15;单株铃数计数结果决定系数、均方误差、平均绝对误差和平均绝对百分比误差分别为0.96、1.19、0.81和5.92%,与人工值具有较高一致性,开发的棉铃跟踪软件可以实现对棉铃的有效跟踪和计数.

棉铃计数、目标检测、目标跟踪、Faster R-CNN、Deep Sort

54

TP391.4;S24(计算技术、计算机技术)

湖北省重点研发计划青年科学家项目;国家自然科学基金;国家自然科学基金;中央高校基本科研业务费专项资金项目

2023-06-29(万方平台首次上网日期,不代表论文的发表时间)

共9页

205-213

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

54

2023,54(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn