基于改进YOLO v4的玉米种子外观品质检测方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2022.07.023

基于改进YOLO v4的玉米种子外观品质检测方法

引用
针对玉米种子在外观品质检测中需要快速识别与定位的需求,提出了一种基于改进YOLO v4的目标检测模型,同时结合四通道(RGB+NIR)多光谱图像,对玉米种子外观品质进行了识别与分类.为了减少改进后模型的参数量,本文将主干特征提取网络替换为轻量级网络MobileNet V1.为了进一步提升模型的性能,通过试验研究了空间金字塔池化(Spatial pyramid pooling,SPP)结构在不同位置上对模型性能的影响,最终选取改进YOLO v4-MobileNet V1模型对玉米种子外观品质进行检测.试验结果表明,模型的综合评价指标平均F1值和mAP达到93.09%和98.02%,平均每检测1幅图像耗时1.85 s,平均每检测1粒玉米种子耗时0.088 s,模型参数量压缩为原始模型的20%.四通道多光谱图像的光谱波段可扩展到可见光范围之外,并能够提取出更具有代表性的特征信息,并且改进后的模型具有鲁棒性强、实时性好、轻量化的优点,为实现种子的高通量质量检测和优选分级提供了参考.

玉米种子、外观品质、多光谱图像、YOLO v4、MobileNet V1

53

TP391.4(计算技术、计算机技术)

国家自然科学基金;河北省重点研发计划项目;河北省高层次人才项目;河北农业大学人才引进研究项目

2022-09-02(万方平台首次上网日期,不代表论文的发表时间)

共8页

226-233

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

53

2022,53(7)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn