基于轻型调控网络的下茧机器视觉实时检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2022.04.028

基于轻型调控网络的下茧机器视觉实时检测

引用
针对蚕茧加工过程中人工目测下茧效率低的问题,采用机器视觉的检测方法代替人工检测下茧.首先,根据图像采集系统成像的景深为线阵扫描相机选择合适的拍摄距离,并通过采样频率的计算进一步配置图像采集系统的参数;然后,用采集得到的线阵图像合成面阵图像构建下茧检测数据集;最后,以YOLO v4目标检测模型为基础模型设计出下茧实时检测模型(Inferior cocoons net,ICNet).该模型通过K-means算法对下茧检测数据集聚类分析来预置候选框参数提升模型精度;采用模型深度调控的方法进行模型压缩,以降低模型权重所占储存空间,提升模型速度;设计轻量级卷积模块构建轻量级特征提取网络进一步提升模型的速度.实验结果表明,本文设计的ICNet下茧实时检测模型较原YOLO v4基础模型平均检测精度提升1.87个百分点,达到95.55%,模型权重所占储存空间压缩40.82%,降为145.00 MB,平均检测速度提升91.65%,达到49.37帧/s.

下茧、实时检测、YOLO v4、聚类分析、模型深度调控、轻量级卷积模块

53

TP391(计算技术、计算机技术)

国家自然科学基金;国家自然科学基金;国家自然科学基金

2022-06-22(万方平台首次上网日期,不代表论文的发表时间)

共10页

261-270

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

53

2022,53(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn