土地利用分类粒子群优化概率神经网络半监督算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.6041/j.issn.1000-1298.2022.02.017

土地利用分类粒子群优化概率神经网络半监督算法

引用
针对以往土地利用监测大都采用监督分类算法,成本较高、错分漏分严重且受人为因素影响较大的问题,提出了一种粒子群优化概率神经网络的半监督分类算法.该算法通过粒子群优化算法优化分类器的参数,提高分类器的精度,运用香农熵选择高置信度的样本扩展初始训练样本集,将大量未标记的样本扩展到训练样本集中,减少了初始标签样本的数量,节约了成本,并与随机森林法、最大似然法、概率神经网络算法进行对比分析,总体精度较其他算法提高了1.25 ~6.57个百分点,Kappa系数达到0.8以上.对新乡市1996年、2004年、2013年、2020年的遥感影像进行土地分类,结果表明1996-2020年间新乡市的建设用地以中部地区新乡县为中心不断扩张,耕地面积也在不断增加,其他用地面积不断减少,沿黄河绿地面积不断增加;土地流转方面耕地转建设用地最为明显,本研究为新乡市进一步合理开发土地资源提供了理论依据.

土地利用分类;半监督算法;粒子群优化;概率神经网络;香农熵;转移矩阵

53

TP79(遥感技术)

国家自然科学基金;河南省科技攻关项目;河南省科技攻关项目;河南理工大学博士基金

2022-03-18(万方平台首次上网日期,不代表论文的发表时间)

共10页

167-176

相关文献
评论
暂无封面信息
查看本期封面目录

农业机械学报

1000-1298

11-1964/S

53

2022,53(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn